On dually almost MRD codes
نویسنده
چکیده
In this paper we define and study a family of codes which come close to be MRD codes, so we call them AMRD codes (almost MRD). An AMRD code is a code with rank defect equal to 1. AMRD codes whose duals are AMRD are called dually AMRD. Dually AMRD codes are the closest to the MRD codes given that both they and their dual codes are almost optimal. Necessary and sufficient conditions for the codes to be dually AMRD are given. Furthermore we show that dually AMRD codes and codes of rank defect one and maximum 2-generalized weight coincide when the size of the matrix divides the dimension.
منابع مشابه
New criteria for MRD and Gabidulin codes and some Rank-Metric code constructions
Codes in the rank metric have been studied for the last four decades. For linear codes a Singleton-type bound can be derived for these codes. In analogy to MDS codes in the Hamming metric, we call rank-metric codes that achieve the Singleton-type bound MRD (maximum rank distance) codes. Since the works of Delsarte [3] and Gabidulin [4] we know that linear MRD codes exist for any set of paramete...
متن کاملProperties of Codes with the Rank Metric
In this paper, we study properties of rank metric codes in general and maximum rank distance (MRD) codes in particular. For codes with the rank metric, we first establish Gilbert and sphere-packing bounds, and then obtain the asymptotic forms of these two bounds and the Singleton bound. Based on the asymptotic bounds, we observe that asymptotically Gilbert-Varsharmov bound is exceeded by MRD co...
متن کاملRank-metric LCD codes
In this paper, we investigate the rank-metric codes which are proposed by Delsarte and Gabidulin to be complementary dual codes. We point out the relationship between Delsarte complementary dual codes and Gabidulin complementary dual codes. In finite field Fmq , we construct two classes of Gabidulin LCD MRD codes by self-dual basis (or almost self-dual basis) of Fmq over Fq. Under a suitable co...
متن کاملError Performance Analysis of Maximum Rank Distance Codes
In this paper, we first introduce the concept of elementary linear subspace, which has similar properties to those of a set of coordinates. We then use elementary linear subspaces to derive properties of maximum rank distance (MRD) codes that parallel those of maximum distance separable (MDS) codes. Using these properties, we show that, for MRD codes with error correction capability t, the deco...
متن کاملGeneralised Twisted Gabidulin Codes
We present a new family of maximum rank distance (MRD) codes. The new class contains codes that are neither equivalent to a generalised Gabidulin nor to a twisted Gabidulin code, the only two known general constructions of linear MRD codes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1612.04268 شماره
صفحات -
تاریخ انتشار 2016